更新时间: 2023-05-16
目前使用的**简单的控制技术是每赫兹伏特。这在概念上既简单又容易在基本的微控制器上实现。核心算法充分利用了交流电机设计的核心特性。每个电机都有一个特性磁化电流和一个**终的磁通量和转矩。这些属性通过伏特每赫兹比率相关。电机通过布置在移动转子周围的定子线圈的转换来转动机械负载。线圈之间的切换迫使转子的磁化元件同情地转动到磁场保持平衡的稳定状态。
线圈切换频率的增加反过来会提高速度。但是,如果供应的电能没有相应增加,则施加的转矩会下降。伏特每赫兹的控制提供了一个简单的方法来解决这个问题,通过增加线路电压来提高频率,使扭矩可以保持在一个恒定的水平。不幸的是,这种关系在低速下不是特别一致。需要更高的电压以在低速下保持高转矩,但效率下降并增加了线圈饱和和过热的可能性。
磁场定向控制提供了一种优化电机控制的方法,特别是在低速情况下,并且还可以使电机的定位控制更**。这增加了整个交流电机的应用范围,这有助于降低工业机械的成本以及运营成本。
在磁场定向或磁通矢量控制中,速度和扭矩之间的关系由伏特每赫兹控制所打破。磁场定向控制的思想可以用直流电机的模型来表达,其中提供给定子和转子的电流是独立的。在这个模型中,扭矩和产生的流量可以独立控制。由电流产生的电机组内部的场强决定了磁通量。提供给转子中的电磁线圈的电流控制转矩-当磁场试图使自己进入稳定状态时。
直流电动机在转子上使用换向器,该换向器执行控制定子上的哪些线圈在任何时间都被激励的工作。换向器的设计使得电流切换到机械对齐的绕组,从而在该点产生**转矩。结果,绕组的管理方式使得磁通量变化,以保持转子绕组与定子中产生的磁场正交。
上一篇:IC698CPE030