更新时间: 2023-06-02
外观检测
检测生产**产品有无质量问题,该环节也是取代人工**多的环节。例如机器视觉涉及到的医药领域,其主要检测包括寸检测、瓶身外观缺陷检测、瓶肩部缺陷检测、瓶口检测等。
伴随着现代工业自动化的发展,机器视觉检测被广泛应用到各种各样的检查、测量和零件识别,例如红外截止滤光片表面缺陷检测、汽车轮毂型号识别、磁性材料外观缺陷检测、产品包装上的条码和字符识别等,这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率。机器视觉检测凭借它自动化、客观、非接触和高精度的特点已经完全能代替人工来检测这些单一、重复性的程序。机器视觉检测系统与一般意义上的图像处理系统相比,机器视觉检测强调的是精度和速度,以及工业现场环境下的可靠性。
高精度检测
有些产品的精密度较高,达到0.01~0.02m甚至到u级,人眼无法检测必须使用机器完成。在生产生活中,每种产品都需要检验是否合格,需要一份检验合格证书,要说检测在机器视觉应用**广,应该没人有意见。在过去机器视觉不发达的时候,人工肉眼检测往往会遇到很多问题,比如准确性太低,容易有误差,不能连续工作且易疲劳,而且费时费力。机器视觉的大量应用将产品生产和检测进入到高度自动化。
识别
图像识别就是利用机器视觉对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。可以达到数据的追溯和采集,在汽车零部件、食品、**等领域应用较多。二维码和条形码是我们生活中极为常见的条码。在商品的生产中,厂家把很多的数据储存在小小的二维码中,通过这种方式对产品进行管理和追溯,随着机器视觉图像识别应用变得越来越广泛,各种材质表面的条码变得非常容易被识别读取、检测,从而提高现代化的水平、生产效率大大的提高、生产成本却逐渐降低。
物体分拣
在机器视觉应用环节中,物体分拣应用是建立在识别、检测之后的一个环节,通过机器视觉系统将图像进行处理,结合机械臂的使用实现产品分拣。
在过去的生产**,是用人工的方法将物料安放到注塑机里,再进行下一步工序。而现在则是使用自动化设备分料,其中使用机器视觉系统进行产品图像抓取、图像分析,输出结果,再通过机器人,把对应的物料、放到固定的位置上,从而实现工业生产的智能化、现代化、自动化。
上一篇:VE4006P2
下一篇:施耐德140XBP01000