更新时间: 2023-07-08
使用NI矢量信号收发仪实现快速功率级伺服控制
NI PA测试解决方案采用的独特技术是使用NI矢量信号收发仪(VST)实现基于FPGA 的功率级伺服。传统的功率级伺服控制是一个非常耗时的过程。然而,通过完全在仪器FPGA上执行控制回路,即可实现**快的功率级收敛。如果将功率级伺服算法从嵌入式控制器中分离出来并在FPGA上执行,测试软件就可以利用并行测量机制进行并行测量,从而显著降低测试时间和测试成本。
提高增益和功率测量精度的一个重要技术是在仪器和待测PA之间使用小型 衰减器。在PA输入和输出功率上使用在线式固定衰减器,可以显著减少由于失配引起的功率不确定性。
使用功率计或VSA可以测量PA的输出功率。过去,功率计通过测量**功率成为**准确的功率测量方法,准确度在±以内。但是现在,矢量信号分析仪(VSA)配备了板载校准标准等工具,可大大提高测量**功率的准确度。VSA,如NI PXIe-5668R,仅仅使用板载校准功能就可以实现±的功率测量准确度,如果使用参考校准标准(如功率计),就可以达到更高的功率准确度。
总体说来,尽管功率计可以比VSA更加**地测量射频功率,但VSA在测量待测设备的输出功率和增益方面有如下优势。首先,VSA可以使用单个仪器进行多种测量,具有便捷性。此外,与功率计相比,VSA可以更快地测量功率,正因如此,在自动化射频测试应用中,许多工程师往往使用VSA,结合 1dB压缩点来测量功率。
测量功率和增益的一个重要步骤就是使用功率计校准系统设置。完成该校正步骤首先需将功率计连接至待测设备输入端的参考平面,如图5所示。使用功率计,我们可以在各种频率下测量信号发生器以及衰减器和线缆的总输出功率。设置好此步骤以后,我们就获得了信号发生器在功率计的功率精度范围内的特性。
校准信号发生器设置完成后,可直接将信号分析仪装置连接至信号发生器装置,信号分析仪装置包括仪器、电缆和衰减器等。利用信号发生器生成的校准响应,并假设使用功率计进行的测量结果正确无误,就可以确定信号分析仪装置的测量偏移。执行完以上校准步骤后,即可参考功率计的结果,更准确地测量输出功率和增益。