复杂机器人的运动控制,一直是阻挡机器人产业发展的老大难问题,迟迟没有得到很好的解决。即便是代表机器人**高水平的波士顿动力,其机器人离实用也还远。近两年发展迅猛的AI,俨然如万金油般,被用在各种地方,自然也包括机器人控制领域,而且似乎取得了不错的效果。前段时间,UCberkely的强化学习专家PieterAbbeel创办了EmbodiedIntelligence,业务更是直接涵盖了VR、AI、机器人三大热点。
机器人控制的几种类型
很多机器人的研究目标很多是模拟人的智能,所以研究人的控制系统,对于机器人有很大的借鉴意义。人体的神经系统由大脑、小脑、脑干、脊髓、神经元等共同构成,复杂而又完善。人体神经系统包括中枢神经系统和周围神经系统。中枢神经系统由脑和脊髓组成,是人体神经系统的**主体部分。周围神经系统是从脑和脊髓发出的分布到全身各处的神经。无数的神经元存在于神经系统各处,构成神经网络。
中枢神经网络负责运动控制,主要分成三层:
大脑:居于**高层,负责运动的总体策划,各种任务的下达。
小脑:居于中间层,负责运动的协调组织和实施。人体平衡由小脑控制。
脑干和脊髓:属于**层,负责运动的执行,具体控制肌肉的骨骼的运动,由脑干和脊髓完成。
三层对运动的调控作用不同,由高到低,低层接收高层的下行控制指令并具体实现。大脑可直接也可间接的通过脑干控制脊髓运动神经。
如果把机器人与人进行类比,机械臂控制器就类似于人的脊髓,负责控制电机(肌肉)和机械机构(骨骼)的具体运动,多足机器人的运动控制器,就类似于人的小脑,负责控制平衡和协调。而机器人的操作系统层,则类似于人的大脑,感知和认知世界,并下达各种复杂的运动目标。
基于以上类比,参照目前的各类机器人的情况,机器人的运动控制大概可以分成4种任务:
脊髓控制——机械臂运动的基础控制。工业机器人,各类机械臂,无人机的底层运动控制等面临的主要是这类问题。
小脑控制——多足机器人的平衡和运动协调控制。这块目前是机器人控制仍未突破的难点,目前做的**的显然是波士顿动力。
脑干控制——环境的感知。主要是扫地机器人、无人机等底层运动控制已经封装好的机器人的导航和路径规划。需要通过环境感知,对自身和目标进行定位、导航和运动规划。
脊髓控制——环境的认知和交互,也就是机器人具体执行交互任务,如控制机械臂抓取物体,执行操作等。这是服务机器人需要突破的重要问题。
【如果您还没有关注“公司名称”手机网站】