与频率为几十或几百兆赫的信号链或数字晶体管相比,传统高功率晶体管的频率上限只有几百千赫,随着新技术的出现,有可能会将该上限推高一个数量级。这种频率限制是由于增高的栅极电容和驱动电压要求造成的。电容器的能量等于1/2乘以电容再乘以电压的平方。栅极电容的充放电功耗等于电容器的能量乘以频率的两倍--一次充电,一次放电。具有15纳法栅极电容的功率晶体管在200千赫、12伏方波驱动条件下需要近半瓦的功耗。对于可传输3至5千瓦电力的转换器,提高开关频率所带来的好处,比如减小磁体的尺寸和重量,有时要比几瓦驱动损耗的成本更有价值。栅极驱动器,电源,微控制器,电路在决定晶体管的驱动要求的元素中,还有一种更为棘手的损耗源。在栅极电容充放电过程中,开关会在全开和全关状态之间存在一个过渡期,此时开关上会出现电压,且会有电流流过开关。由于同时存在较高的电压和较高的电流,因此这类开关损耗会造成相当大的功耗,有时会达到几十瓦,以及进一步的效率降级。因此,通过更快地对栅极电容进行充放电来缩短过渡期的持续时间是有好处的。如果输出电压甚至高到足以使晶体管导通,那么大多数微控制器提供的低电流信号在驱动高功率晶体管时都会慢得
【如果您还没有关注“公司名称”手机网站】