通过简单地改变磁通基准和获得转子磁通位置,可以使用相同的磁芯结构来控制同步电机和感应电机。在同步永磁电机中,转子磁通是固定的,因为它由永磁体确定。感应电动机需要创建转子磁通才能起作用,所以这被作为非零值并入到磁通参考中。磁场定向控制成功的关键是实时预测转子磁通位置。这种控制策略是复杂的。在交流感应电机内部,转子的转速与驱动其旋转的磁通量的速度不匹配。转子倾向于滞后,导致差异被称为滑动速度。在以前的方案中,电机制造商使用传感器来分析转子位置,但这会导致不必要的额外成本。在实践中,可以使用电机内部产生的电压和电流的反馈来补偿滑差。许多系统使用测量的反电动势来估计转子打滑。反电动势电压的大小与转子的速度成正比。但是,直接使用此输入会导致速度低或停顿时出现问题,并且估计初始位置并不容易。从未知的转子位置开始,可能会导致电机意外地反转一小段距离,或导致电机完全启动失败。简单采样反电动势的另一个缺点是它对定子电阻的敏感性,定子电阻容易随温度而变化。基于间接模型的方案提供更高的性能。计算开销和性能之间存在很大的折衷,但总的来说,通过使用更复杂的基于模型的算法可以提高效率,特别是在低速下。基于间接模型
【如果您还没有关注“公司名称”手机网站】