BOSCHBM-DP12-1070075887-202

更新时间: 2023-05-31

平面物体检测

这是目前工业流水****常见的场景。目前来看,这一领域对视觉的要求是:快速、**、稳定。所以,一般是采用**简单的边缘提取+边缘匹配/形状匹配的方法;而且,为了提高稳定性、一般会通过主要打光源、采用反差大的背景等手段,减少系统变量。

目前,很多智能相机(如 cognex)都直接内嵌了这些功能;而且,物体一般都是放置在一个平面上,相机只需计算物体的(x,y,θ)T 三自由度位姿即可。

另外,这种应用场景一般都是用于处理一种特定工件,相当于只有位姿估计,而没有物体识别。

当然,工业上追求稳定性无可厚非,但是随着生产自动化的要求越来越高,以及服务类机器人的兴起。对更复杂物体的完整位姿(x,y,z,rx,ry,rz)T 估计也就成了机器视觉的研究热点。

​有纹理的物体

机器人视觉领域是**早开始研究有纹理的物体的,如饮料瓶、零食盒等表面带有丰富纹理的都属于这一类。

当然,这些物体也还是可以用类似边缘提取+模板匹配的方法。但是,实际机器人操作过程中,环境会更加复杂:光照条件不确定(光照)、物体距离相机距离不确定(尺度)、相机看物体的角度不确定(旋转、仿射)、甚至是被其他物体遮挡(遮挡)。

提出了一个叫做 SIFT (Scale-invariant feature transform)的超强局部特征点。

具体原理可以看上面这篇被引用的论文或各种博客,简单地说,这个方法提取的特征点只跟物体表面的某部分纹理有关,与光照变化、尺度变化、仿射变换、整个物体无关。

因此,利用 SIFT 特征点,可以直接在相机图像中寻找到与数据库中相同的特征点,这样,就可以确定相机中的物体是什么东西(物体识别)。

对于不会变形的物体,特征点在物体坐标系下的位置是固定的。所以,我们在获取若干点对之后,就可以直接求解出相机中物体与数据库中物体之间的单应性矩阵。

如果我们用深度相机(如Kinect)或者双目视觉方法,确定出每个特征点的 3D 位置。那么,直接求解这个 PnP 问题,就可以计算出物体在当前相机坐标系下的位姿。

当然,实际操作过程中还是有很多细节工作才可以让它真正可用的,如:先利用点云分割和欧氏距离去除背景的影响、选用特征比较稳定的物体(有时候 SIFT 也会变化)、利用贝叶斯方法加速匹配等。

而且,除了 SIFT 之外,后来又出了一大堆类似的特征点,如 SURF、ORB 等。


上一篇:HIMAZ7116

下一篇:施耐德140ACI04000