DSTC170-57520001-BK

更新时间: 2023-05-31

​在智能机器人的研究中,具有视觉的机器人的研究也就成了**位的。对机器人视觉伺服系统的研究是机器人领域中的重要内容之一,其研究成果可应用在机器人自动避障、轨迹跟踪和运动目标跟踪等问题中。

制造出像人一样具有智能的能替代人类劳动的机器人,一直是人类的梦想,人类获取的信息80%以上是通过视觉。因此,在智能机器人的研究中,具有视觉的机器人的研究也就成了**位的。对机器人视觉伺服系统的研究是机器人领域中的重要内容之一,其研究成果可应用在机器人自动避障、轨迹跟踪和运动目标跟踪等问题中。从反馈信息类型的角度分类,机器人视觉伺服系统可分为基于位置的视觉伺服系统(position-base)和基于图像的视觉伺服系统(image-base)。基于位置的视觉伺服系统首先要估计目标物体在直角坐标空间中相对于摄像机的位置,其视觉伺服误差定义在三维笛卡尔空间,视觉或特征信息用来估计机械手末端与目标的相对位姿,这种方法需要对视觉系统和机器人进行**标定,另外由于要对图像进行解释,因而计算量较大。基于图像的视觉伺服系统的伺服误差直接定义在图像特征空间,即摄像机观察到的特征信息直接用于反馈,不需要对三维姿态进行估计,但系统需在线计算图像雅可比矩阵(图像特征参数变化量与任务空间位姿变化量的关系矩阵)及其逆阵,而图像雅可比矩阵跟许多实时变化的参数有关,这是一个复杂的非线性过程,从理论上很难分析,并且对机器人的控制设计提出了较大的要求[2]。机器人视觉伺服系统是一个很复杂的系统,综合了许多学科的内容,而各学科的发展又极不平衡,影响了其进一步发展。正是基于此,机器人视觉伺服研究目前处于停滞不前的状态,国内对此方面的研究大多只是进行了仿真实验,而未在实际机器人系统上实现。本文利用松下交流伺服系统、pmac运动控制卡、dsp图像处理系统、工控机和机器人组成了伺服系统,在具体机器人系统中对其进行实验研究,探索基于图像的机器人视觉伺服实现问题,机器人视觉伺服系统组成部分。