厦门阿米控技术有限公司

通用于可编程控制器BentlyNevada3500/60

发布时间:2023-05-30

当存在时间序列数据时,经常使用使用常微分方程 (ODE) 来确定连续时间隐藏状态的循环神经网络。研究人员团队着手改进这种结构,以“实现更丰富的表征学习和表达能力”。  研究人员写道:“我们不是通过隐式非线性来声明学习系统的动态,而是构建通过非线性互连门调制的线性一阶动态系统网络。”  作为替代方案,研究人员创建了一个液体时间常数 (LTC) 循环神经网络 (RNN)。这种新型循环神经网络的优势在于它在设计上更具表现力,因此本质上更透明和可解释。  这种表现力使研究人员能够更好地了解神经网络的一些“思考”过程,这一好处有助于揭开人工智能机器学习“黑匣子”的一些复杂认知的神秘面纱。  研究小组写道:“由此产生的模型代表了动态系统,其变化的(即液体)时间常数与其隐藏状态耦合,输出由数值微分方程求解器计算。” “这些神经网络表现出稳定和有界的行为,在神经常微分方程族中产生卓越的表现力,并提高了时间序列预测任务的性能。”  为了评估他们的新模型,该团队对他们的液体时间约束递归神经网络进行了大量实验。实验包括训练分类器从运动数据中识别手势,从传感器数据流(温度、二氧化碳水平、湿度和其他传感器)预测

分享:

【如果您还没有关注“公司名称”手机网站】

Top